Energy transition and decarbonization!

From only environmental focus to become a question of global competitiveness

In less than 2 hours, the earth receives the amount of energy we consume annually

Fortum's solar plant in India

Every year in August humans have used up all the resources earth can regenerate in a year

PV is already the cheapest electricity form almost everywhere

The trend with decreased prices is expected to continue

Utility-scale PV LCOE (€/MWh) based on average 2020/2030/2050 CAPEX

Solar hydrogen starts to be a competitive fuel around 2030

Utility-scale solar hydrogen LCOH (€/kg) based on PV LCOE and electrolyser CAPEX 2020/2030/2050; as a reference, LCOH is **1.1 €/kg** for hydrogen produced from natural gas (15 €/MWh) with steam reformer and without CCS; CCS would add ~50% to LCOH

Renewable Energy is the key enabler for circular solution

A massive amount of energy is needed to maximize "man made" circular system

Four advices and activities

How to decarbonize without losing your competitiveness if you live far from the solar belt

- 18.4 Is a long-term challenge, and will define how well we will be able to decarbonize our society
- 2&3 Is short-term question, that needs to be solved today, and will define how competitive we will become in the Nordics

Stop focus on energy efficiency

Start focus on material efficiency and capacity optimization

Steer the societies investments, subsidies and tax systems from energy efficiency to capacity optimization and material efficiency.

1

Secure effective sector coupling

- Electricity,
- Natural gas, Hydrogen (H2)
- Electricity, networks (TSO and DSO), Gas Networks, Natural gas and
- District heating
- Traffic

Create a holistic framework to steer all sectors in the same direction

- How to minimize Security of Supply cost and grid cost?
- How to transport energy over long-distances (1000 to 3000 km), electricity or H2?
- Finnish, Nordic or European perspective?

Build new infrastructure, Electricity and Hydrogen

3.

Secure and maintain effectiveness and competitiveness of current system:

- Fossil free electricity production
- Value flexibility and Security of Supply
- District heating

Secure a system or market that enable large investment into:

- Wind
- H2, production and pipe

Set target for CO2 reduction in end products

• Steel, Cement, Fertilizer, Liquid fuels

Create a market to enhance the value of flexibility

4.

Re-define the meaning of "sustainability" so it allows a green industrialization

- Sustainability needs to be defined, so human activities can be something positive, and more human activities the make the world even better.
- Today, the definition of sustainability makes human activities bad or problematic
- Sustainability definition needs to be able to handle the global impact in relation to local impact, at the same time allowing society to develop
- We use the precautionary principle to broad in conjunction with environmental law, it has become a tool to stop the development, instead of improving the environment.

Legal framework needs to be adopted and changed

From Waste-to-Energy towards Waste-to-Materials Vision: From 98% energy efficiency to 98% material efficiency

Renewable energy will be endless resource – scarcity of materials will set limits for economy

Technical benefits:

- **Purity of all fractions**, enabling cost-effective production of end-products
- **Optimized properties of all fractions** (vs. conventional pulp mills: only pulp is optimized)
- **Smaller unit size** (e.g. 1/5) with at least the same feasibility as large pulp mills
- Flexibility in feedstock, e.g., possibility to use waste (e.g., straw)
- Ability to combine best parts of different technologies

Environmental benefits:

- Possibility to replace fossil raw materials
- Lower pollution (e.g. CO₂) & reduced water consumption
- Reduced land degradation & deforestation

Man-made circular system, two major global areas

Focus on molecules, not products

Man-made circular system needs focus on

- Upgrading of material
- Material efficiency

